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Control of the rotating motion of a rlgld body by means of torque producing 
rockets 1s reduced to the selection of thrust programing regimes for the 
rockets In conjunction with the conditions for a specific problem. Below Is 
Investigated the problem of determInIng the optimum law for rocket operation 
during despI.nnIng of the angular velocity of a symmetric body which initially 
rotates freely In space about Its center of mass. Two despinning regimes are 
considered: despInnIng In shortest time (for unspecified fuel consumption), 
and despInnIng with mInIma fuel consumption (for unspecified time). Although 
both of these regimes can coincide in certain speclflc cases, they are dif- 
ferent in general and must therefore be considered separately. 

It Is assumed in the present analysis that the rockets produce control 
moments about the princl al axes of Inertia of the body and that the moments 
of Inertlcls of the body s as well as the directions of the principal body axes) 
remain practically unchanged as the result of fuel consumption. The control 
moments are considered bounded In magnitude. 

It was found, as the result of the Investigation, that In the first case 
all three control moments act reversely until the body comes to a rest, and 
In the second case the transverse moments are activated sequentially while 
the longitudinal moment (directed along the symmetry axis of the body) resEiIns 
on until complete eliml.nation of the longitudinal component of the body angu- 
lar velocity. Phase trajectories are presented for the problem of preces- 
sional motion elimination In a body whose longitudinal velocity components 
remains unchanged. 

1. aho despiaalag la sbocteet tiau. Let ‘us consider the problem of r’lnd- 

lng the optimum regI.me with respect to speed for slowing down the motion of 

a symmetric rigid body. Assuming for definiteness that the polar moment of 

Inertia C of the body 1s larger than its equatorial moment of Inertia .4r 

the system of differential equations of the notion of the bcdy may be expres- 

sed as 
% 

5 - &co, 0, = - mz A, 6&--T- 

( e= 2+> 0) (1.1) 
It Is reqxlred to detertie the control .iaw fcr the torques no,, n, , m, 
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(with respect to the principal axes of inertia X, y, z) such that the com- 

ponents of the angular velocity J), , UI,, UI, (which become phase coordinates 

in the sequel) attain specified flnal values In shortest time. In case of 

a complete stop, the fInal values of the body’s angular velocities must be- 

come zero, while in the case of incomplete desplnnlng, for example, when 

only precessional motion Is removed, only the transverse components a,(,“) 

and a,(T) must vanish, where P is final time of the process. In view of 

the linearity of the control moments with respect to the derivatives In Aqua- 

tlons (l.l), It Is convenient to utilize the maximum principle [l] for formu- 

lating the variational problem. Let us construct the y function for the 

problem considered as 

and write down the system of equations for phase impulses as 

Pk = - t%f/ &Ok 

kpanded, it becomes (1.3) 

Pi +“p~oz=o, P;--PrOz=O, pz’-8(p&o,-pp,o,)=0 

Without yet flxlng the boundary conditions for the problem, we will con- 

struct the necessary Integrals of Equations (1.1) and (1.3) and will Lnvestl- 

gate the general character of the optimum control regime. Utilizing the 

maxImum princjple, we will establish the optimum law for variation of the 

controls “I~ . Since the function .T Is linearly dependent on the controls, 

it becomes maximum for limiting values of the controls, and If the multiplier 

F, for m, Is positive then the control Is at Its upper bound, and conversely. 

Thus, for pk+o the optimum regime for the moment mL variation will be of 

relay (*) type and Is determined by the following relationships: 

Q (t) = max mk for pk (t) > 0, mk (t) = min mk for PxW<O (1.4) 

If the varlatlon regions of m, are symmetric with respect to zerc, then 

mk tt) = TIM 1 mk 1 %n pk @> (1.5) 

Here maxlnz,I Is the magnitude of the kth control amplitude. In the 

following, m, will denote In the present problem the quantity defined by the 

relation (1.5). 

2. Iatr(rrtioa of thr rquatloam ror optimum mot1oa. In order to obtain 

the solution of the system of equatlcns (1.1) and (1.3) In which the ccntrola 

are defirred in accordance with the conditions (l.j), we isill separate at 

first the folloring subsysten contalnlng the variables r’, , ‘, and I, 

pr’+~pll~Z=O, pv’-~pxuz=O, o,‘=m,lC (2.1) 

‘) If pr = 0 t then singular regines occur uhlch rzay differ from the relay 
type. Lee [ 33 considers these regimes in greater detail. 
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h accordance with (1.5), the moment m, is constant on each separate seg- 
ment of the motion, and consequently, the solution of the last equation on 
the segment will be 

% = 0,s + c-%2, t c-w 

Thus, the ath component of the body’s angular velocity in the optimum 
desplnning regime represents a piece-wise linear function the d~s~ont~nu~ty 
points of which, according to (l.s), correspond to the roots of the function 

PI * 

Let us consider the complex function 

P = Pr -I- iPv (2.3) 
The first two equations In (2.1) yield 

P’ - ieo, p = 0 

The solution of this equation 1s 

(2.41 

f 

p -1; p. exp (ie 
s 

0, dt) (2.5) 
0 

Taking Into acoount Expression (2.2), we find 
t 

em s’ 0, dt = 2 1 2c t2 + e&o t = h b’q - w*;> (b +) (2.6) 
0 

Now, in place of (2,5), we get 

p exp (- iho,8) = const (2.7) 

The expression for the function p may also be given as 

p = P exp [i (hub2 + ~$1 (2.8) 

where p and o are real constants of integration determined from the 
boundary conditions of the problem. Thsrefore, we have for px and P,, 
respectively 

px = P cos (hco,2 + a), prr = P sin (hoz2 + a) (2.9) 
Multiplying the second equatlon in (1.1) by t and adding It to the 

first one, we obtain the equation for the complex transverse angular velocity 
of the body 

0 - iEOzO = A-‘m (0 = 0, -+ iOV, nr = n, + iy,) (2. i0) 
The general Integral of this equation Is aacordlng to [2] of the form 

Taking into account Expression (2.6) and changing from the variable t 

to ult, we obtain as the result of integration 
I)? k. + 1) 

0 = ‘0, exp t ik (oz2 - o,,“)l + -- l,LZ 
- i sgn h (S - SO)1 exp ( ihoz2) (2.12) 

V=w%WIf* ~o=Sf%l) y--j-q) 
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Here C(m) and s(m) are the Fresnel Integrals 

c (w) = J/Q cas v%lv, 
0 

sin 4dv (2.13) 

The Integral (2.12) can also be expressed as 

0 exp (- iho,?) - IC - i sgn ASI = D = const (2.14) 

To determine function p, , one need not Integrate the corresponding dlf- 
ferentlal equation; this function Is part of the problem Integral y which 
may be expressed In the form 

m,C-lp, - ~0, (JW, - par4 + A-l (pxmx + PP,) = 1 (2.15) 

The right-hand part of this Integral only is constant during the entire 
process of deeplnnlng. This la because here the relay controls mk are the 
multipliers of the corresponding pr functions, which vanishbat switching 
instants. 

3. Iavertl#at$on o? the rolutlon. The derived integrals for phase coor- 
dinates and Impulses contain a sufficient number of constants for the solu- 
tion of the considered two-point boundary value problem. The three constants 
defining the initial position of the phase point In phase space can be chosen 
as, for example, the Initial values of the velocltles mzo, m,e, m,c. Then, 
In order to satisfy the boundary conditions of the problem (for example, to 

get oX (T) - o,, (I’) = wL (T) = 0 ,ln the caee of a complete stop) there 
remain the quantities p, Q and T , where T 18 the duration of the 
desplnnlng process, and p and Q_ are integration constants In Bquatlons 
(2.9). From the requirement of continuity for pX and p, at the switching 
points for the torques m, It follows that their amplitude p and phase 

(XUI,~+ a) also must be continuous. Thls means ln turn that the constant p 
retains Its value during the entire desplnnlng process, and the constant c 
changes stepwlse by a quantity k21), 10. * at the switching points of the 

torque m,, remaining unchanged at the switching points for the torques m, 

and m,. 

Taking Into account Expressions (2.9) for pX and p, and also considering 
the relations (1.5), we rewrite the Integral (2.15) in the form 

1 pzml 1 C--l + PA-’ [( m cos (hz2 + a)i + 1 m, sill (hoz2 + a)11 - .,. 

- EPO~ [w,, cos (hti~,~ + a) - 0, sin (kc,” + a)1 = 1 (3.1) 

Hence, It follows that the derived Integral determines only the modulus 
of the function pz and not Its sign. The Ipt 1 can also be expressed as sn 
explicit function of UI,, having ellmlnated UJ, and IO, by means of the 
expresalon (2.14). However, for computing purposes, It Is apparently more 
convenient to use kpresslon (3.1) directly. 

The laws for switching the torques m, and m, are given by Expressions 
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mx = i mx lmax sgn cos (ho,” f a), q/ = I m,, / KkRX sgn sir1 (hw,* + a) (3.3) 

At the same time, the switching of the torques m, and m, occurs, res- 

PeCtivelY, at the Points defined by Equations 

Ati),2 -+ a = nn + ‘/,Jx, AC&? f a = nn (FL --= 0, f 1, & 2, . . .) (3.3) 

Phase trajectories of the system are determlned by Equation (2.14), the 
right-hand side of which changes stepwlse at the switching points of the 
torques m, , m, , m, . Let us find the magnitude of this step at the switching 
polnt of m, a &I the strength of the continuity of U) and UI, we obtain 

AL? (Am,) = II), - L), = 20 sin &0,2 -j- 2~~~z~ ‘) (&Jr c (3.4) 

At the switching point of the torque m we get for A,D 

AD (A~) = D, - D, = (ml - 2: (s + ” (~~I’* (C - i sgn h S} (3.5). 

Here the subscript 1 denotes a quantity before switching and subscript 2 
that after switching, B is a constant defined by the integral (2.14). The 
relationships (3.4) and (3.5) permlt joining of the phase trajectory of the 
switching points of the controls during numerical evaluation of the despln- 

r&g process. gquation (2.14) is equivalent to the two real equations 

ox cos AOf2 + (it, sin .k~3,~ = Re D + $ 
L ( 1 

+ ‘%* c + ~vsgn~s) 

@x ’ + oy2 = 1 D 1’ + 2<-fl (&)“’ IC Re (Dn) - sgn h S Im (.@%)I -+ 
z 

+ ‘~~~~~~~~ (C2 + 9) (3.6) 

This shows that the phaae trajectory represents a line of intersection of 
a ruled hel.lcoldal eurface with a surface of revolution, i.e. a certain space 
spiral-like cute of varying radius and varying pitch which turns itself 

about the m,-axis. 

For sufficiently large values of UI, when Xti%>> 1. , the expresSion for 
the angular velocity ~1 as a function of UJ, can be simplified. SUbstitu- 
ting asymptotic expansions for the Fresnel integrals 

C (02 VT31T, = ; + ~i~~~i, s (Co, jq h 1) s ; - :os;g, (3.7) 
* z 

into (2.14) and neglecting nonreal constants, We get 

i 

‘0 - w, (p_ A) ) exp (- ihoz2) = const (3.8) 

lvkrltfprying both parts of (3.8) by their conjugate quantities we find 

( 

2 

Wxi- 
“Z!l % 

0, (C - A) ! ( a+ %--- o,(C-A) J 
= const~ (3.9) 

AS can be seen from above, for sufficiently large values of & #the Projec- 
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tlon of the phase traJectory on the surface w=u), will consist in a sequence 

of arcs similar to the arcs of circles. 

ThUS, the construction of the solutions for the coordinates u)~ and the 

Impulse8 pr permit ln principle the evaluation of a nonslngular optimum 

regime for desplnning of a symmetric body. However, these .integrals Contain 

two unknown constants p and c determlned from the boundary conditions of 

the problem. Therefore, for specific evaluation of the desplnning process, 

it is more COnvenieI&i to consider it in the reverse dlrectlon assuming, for 

example, that initially u).= UJ,= UJ.= 0 . Then assuming values for p and 

c , it 1s possible to compute the entire phase trajectory up to a certain 

point u),(T), m,(r) , (u,(2). Varying then the initial value8 of p and c 

It is possible to "fall" into a point of phase space separated by an arbl- 

trarlly small distance from the given point. We will note that the formula 

for the initial value of the modulus p10 

Fig.1 

Fig.1 shows one of the .__ ._ _ 

Depending on the choice of the sign for the 

quantity p.0 we get two phase trajectories which 

are 8ymmetrlc with respect to the surface v),= 0. 

For definiteness, It can be assumed that plo> 0 
and, consequently, m,>O and x,>O. The 

signs of the control torques m,,, anG m,,, ,depend- 

lng on the magnitude of the angle co, are deter- 

mined with the aid of ExpressIons (3.2). 

phase trajectories for the coneldered problem which 
waa constructed by the described method, I.e. for the spinning-up process of 
the body from zero Mtlal velocity to It8 final value. w virtue of the 
reversibility of the solution for the variational problem, this trajectory 
will be o 
w,(T), w, P 

tlmum also for the desplnnlng process of the body from the point 
r), w.(T) ln Phase space to the point IN.- IO,= u).= 0 . 

IPzoI=&[~ -; (I mx cos a0 I + 1 m, sin a, I)] 
(3.10) 

yields the condition 

o<p< 
A 

( m, cos a0 I + I my sin a0 I 
(3.11) 

4. hrpm with ailnbal ooMumptlon of mam. Assuming that the con- 

trol torques m, are generated by rockets with constant exhaust velocities, 

and also that the rocket8 producing m, and m, torques are Identical, we 

take the following Integral as the functional of the problem: 
T 

0 

where Iy Is the quantity proportional to the consumed ma88 for desplnning 

and p and v are positive constants. Thus, in this problem, the system 

of equations of motion (1.1) should be augmented by the addltlo~l equation 

for the function N 
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and we should seek such a switching regime for the control torques m, for 
which H(T) shall be minimal. However, Equation (4.2) is awkward in that It 

contains absolute values of sign varying functions. In order to eliminate 

this Inconvenience, we will assume that the quantities m, can be only posl- 

tlve or equal to zero 
o<~k<<~k(max (4.3) 

and their sign in Equations (1.1) will be given by introducing additional 

controls uL, the complete set of permissible values of which is bounded only 

by two points uL = f 1 . Then in place of the systems (1.1) and (4.2) we will 

have %c% 
0,’ 4 EOyOz = - .4 ’ WV 

%5l - tm_Y& = - 
A 

(4.4) 
It is easy to see that the differential equations and, consequently, the 

integrals for P, and p, will remain as before. The Integral which deter- 

mines pI, however, will change because the form of the function H will 

change with the Introduction therein of a new quantity PM, which Is conju- 

gate of the variable n , It follows from the formulation of the problem 

that the quantity p, will be the only constant equal to unity during the 

entire despinning process, With this in mind, the function fl can be 

expressed in the form 

+mz(!k$_ ) v - E@z(P,ql- P,wc> (4.5) 

From the maximum condition for this function with respect to the controls 

mL and ut, It follows that 

uk = sgn pk, mk =Imklmax% (PkUk - Ik) (4.6) 

Here 

I,=I,=pA, Iz=‘d’, sgw=i forw>O, sgw=o forw<O 

As far as the function pI is concerned, it Is determined directly from 

the Qtegral (4.5), as before, which in view of (4.6) can be expressed as 

follows : 

mx 
i 

I P, I 
---_ -Oh A ) ( 

-!$ - p) + m, (T-V) = mrpr’ (4.7) 

Since the left-hand part of this equation cannot be negative In the opti- 

mum regime, then sgn pr’ = sgn 0, (4.8) 

It follows from the relation (4.7) that at the end of the desplnnlng Pro- 

cesewhen w~=uJ,-uJ~=O, the left-hand part of It must also be equal to 

zero, i.e. conditions 
IPk tT)i < Ik (4.9) 

must be fulfilled. 

ti those cases when at some section the condition 



lpkl = Ik (4.10) 

Is fulfilled there can arise slligular control regimes when the magnitude of 

the control torques may assume other than Its boundary values. 

Apparently, the singular regime for transverse torques m, and m, can 

arise only simultaneously for both of them and only when the longitudinal 

velocity UI, Is entirely eliminated, since In the opposite case, according 

to (2.4), the functions pX and p, cannot become constant quantities fulfll- 

llng condition (4.10). The singular regime for the longitudinal torque m, 

Is characterized by conditions UJ,# 0 and Ip.1 = VC . It follows that 

Pa’ = 0, I.e. either IN.= IN,= 0 or P~UI,= p,~, . 

The first case corresponds to the regime of pure rotation of the body 

about the longitudinal axis, and here, naturally, the law for variation of 

m, does not affect the general consumption of fuel. 

As can be easily shown, the second case can take place on,ly in passive 

zones of the transverse torque, I.e. on sections where m = 0 . Note that 

In general the derivative p> becomes constant in passive zones where m = 0 

(as can be easily shown with the aid of Expressions (2.5) and (2.11) and, 

consequently, the function p, Is linear in these Intervals of time. 

It follows from the form of the Integral (4.7) that during the entire 

desplnnlng process the function pI varies monotonously, contlnously lncreas- 

lng or decreasing depending on the sign of the Initial velocity UI.,,. If it 

Is assumed that lnltlally mD> 0 , then according to (4.8) P.d> 0 and p, 

will Increase. In this case, It Is necessary that condition pxo<-vC be 

fulfilled, since otherwise the angular velocity UI will begin to increase 

continuously and no deeplnnlng will C&U in view of Equations (4.4) and 

(4.6). 

Analogously, If ul,oc 0 , then the Initial value of plo must be.larger 

than vC . Since this reasoning IS valid for any Instant of time, it can be 

concluded that the sign of the function p, must always be opposite to the 

sign of u),, i.e. 
u, = -Sgn% (4.11) 

Thus, the deeplnnlng of the longitudinal angular velocity occurs by turn- 
ing on the torque m, In the direction opposite to u). . If the magnitude 

of this torque remains constant at all times, then the duration of the action 

T Is defined by Formula I (40 I c 
IT== Im,j (4.12) 

whereby 

I Pz ($1 := VC (4.13) 

The law for variation of UI, will then be linear so that, if for deflnlte- 

ness IJJ,~> 0 , we get 
OL = ozo - m,C-lt (4.14) 

In view of this, m, can be utilized Instead of t as the Independent 

variable, as long as t c 7 , l.e.before the velocity u), becomes zero. By 
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the same token, the integrals 

0 <t<\( which only require 

the corresponding torques m, 

&A. hol'nikov 

(2.8) and (2.14) remain valid on the section . 
the substitution of the controls Us before 

. Also, It Is understood, and should be noted 

that in contrsst to the problem of speed control here the controls m,, m, 

have passive zones, I.e. sections where m,= 0 (k P X, I/) , 

The location of these zones Is defined by condition 

IPXI<PA,. IPYI <PA (4.15) 

From the requirement that these conditions must be fulfilled slmultane- 

ously in finite time, we obtain the Inequality for the amplitude p 

/.d,<P<pA7/2 (4.16) 

of the trurrvorrr vrlooltp. A particular case of the con- 
s the problem of ellminatlng the precessional motion of the 

rigid body, I.e. the removal of the transverse components of angular velocity 
UI, and w, of the symmetric body with m, z 0. Under these conditions, the 

form of the solution will be different since 
WI’ ma0 = const and, consequently, Instead of 
the system (1.1) we shall have a system of 
linear equations with constant coefficients. 
Denoting 

Em,0 = P (5.1) 

for the complex angular velocity UJ and func- 
tion p - p. + tp, we will have the Integrals 

(a -5) emiPt = const, peeipf = coast (5.2) 

It follows from this that the phase trajec- 
tory on the surface w,w, will be a curve com- 
posed from circular arcs. In contrast to the 

Fig. 2 problem of speed control, here the composition 
of these arca will consist also of the arcs 

with centers at the origin of the coordinates corresponding to those zones 
where m,= m,- 0 . 

In order to construct the phase trajectory of the system, we first con- 
struct a diagram In the form of a circle of radius p and a square with a 
side q aa IS shown in Fig, 2. In movWg along this circle, the end of the vector 
p = pe (pf+@ will then fall Into zones corresponding to the various values of 
the controls m, and m, and, as can be seen, the shaded segments correspond 
to the torques m, and m, acting while r;he unshaded segments correspond to 
passive zones, I.e. when m = m,- 0 . It is easy to see that the width of 
the passive zone y as well as the width of any active zone 6 depends on 
the magnitude of the ratio u/p and are subject to the relationships 

cos ‘i$ = PA I P, 7 + 6 = ‘lzn (5.3) 

With the aid of this diagram, we can construct a family of Phase trajec- 
tories stemming from the origin of the coordinates. Apparently, the first 
p&t must be active, for example, m,# 0 and for definiteness, we assume 
that COB CL,> M/p, so that uX = 1 . 

Then, accordlrig to (5.2), the equation for the Initial part of the phase 
curve will be 

(5.4) 

As soon as the complex vector p in Flg.2 reaches 46 , i.e. thea;E;il;;e 
vector w - t&n,/@) turns in the phase plane by an angle )a - a 
point [I, the torque m is turned off and then the phase curve becomes an 
arc of a circle centered ibout the origin of the coordinates with the enclosed 
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angle Y l Then the torque m, is turned on and the hase trajectory moves 
along the circle arc with the center at the point a1 O,,.=O, W, = - m,,/pA), P 
and the length of tne arc will, apparently, enclose th& angle-- 6 . ‘%ere- 
after, the torque m, Is turned off and the trajectory becomes the arc of 

the sector y referred to the 
origin of the coordinates. 

a) b) 

Continuing this process, It 
can be shown that the family of 
phase trajectories with axes u),, 

will be of the form shown In 
&a. As can be seen the en- 
tire phase plane is divided into 
eight sectors by switching lines 
composed of circle arcs the length 
of each in angular meaaure IS 
equal to b . Four of these sec- 
tors correspond to the active 
zones of desplnning and four 
others to the passive zones with 
coasting. Note, that the width _ . . . . 
or tne passive zone y ln the 

present problem where there is no control of the longitudinal velocity, can 
be arbitrary In the region 0 c y $ &I . The width of this zone affects only 
the duration of the desplnning process but does not affect the fuel consump- 
tion. In the llmlt when y + 0 , passive zones disappear and the phase plane 
becomes as shown in Flg.3b. .It is worth noting that here the appearance of 
the phqe trajectories does not actually differ from the phase trajectories 
in the analogous case of speed control with the exception of rotation of the 
whole phase plane by the angle * , 

Thus, comparing the regimes optimum with respect to speed control and fuel 
colysumptlon, .lt can be concluded that they differ qualitatively In that the 
latter have control torques m, and m, acting not simultaneously by sequen- 
tially, and that the longitudinal torque m, is not reversing in the despin- 
ning process, Its sign is always opposite to the sign of the longitudinal 
component of the angular velocity UI, , 

In conclusion, It should be noted that the practical realization of the 
considered optimum reglmes is most difficult in view of complex character of 
the switching surfaces located In the phaee space of the system, However, 
the constructed solutions make It possible to find the limiting speed of 
control or the economy of control system performance and to evaluate from 
this point of view the quality of an arbitrarily selected nonoptimum regime 
of control. 
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