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Control of the rotating motion of a rigid body by means of torgue producing
rockets is reduced to the selection of thrust programing regimes for the
rockets in conjunction with the conditions for a specific problem. Below 1is
investigated the problem of determining the optimum law for rocket operation
during despinning of the angular velocity of a symmetric body which initially
rotates freely in space about its center of mass. Two despinning regimes are
considered: despinning in shortest time (for unspecified fuel consumption),
and despinning with minimal fuel consumption (for unspecified time). Although
both of these regimes can coincide in certain specific cases, they are dif-
ferent in general and must therefore be considered separately.

It 1s assumed in the present analysis that the rockets produce control
moments about the principal axes of inertia of the body and that the moments
of inertiss of the body (as well as the directions of the principal body axes)
remain practically unchanged as the result of fuel consumption. The control
moments are considered bounded in magnitude.

It was found, as the result of the investigation, that in the first case
all three control moments act reversely until the body comes tc a rest, and
in the second case the transverse moments are activated sequentially while
the longitudinal moment (directed along the symmetry axis of the body) remains
on until complete elimination of the longitudinal component of the body angu-
lar velocity. Phase trajlectories are presented for the problem of preces-
sional motion elimination in a body whose longitudinal veloclity components
remains unchanged.

1. The despinning in shorteet time., Let us consider the problem of Iind-
ing the optimum regime with respect to speed for slowing down the zoticn of
& symmetric rigid body. Assuming for definiteness that the polar moment of
inertia (¢ of the body is larger than i1ts equatorlal moment of inertia 4,
the system of differential equations of the motion ¢f the bdedy =ay te expres-

sed as . m, . m, . m
mx+emymz=7, Wy — 8O O = ——, 0, =&

(e= f=A> 0) (1.1)

It 1s regquired to deterzine the control 'law for the terques m,, &, m,
z Y
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(with respect to the principal axes of inertia x, Vs 2z) such that the com-
ponents of the angular veloclty w,, w,, w, (which tecome phase coordinates
in the sequel) attain specified final values in shortest time. In case of

a complete stop, the flnal values of the body's angular velocitles must be~
come zero, while in the case of incomplete desplnning, for example, when
only precessional motion is removed, only the transverse components m!(:)
and w,(T) must vanish, where 7T 1s final time of the process. In view of
the linearity of the control moments with respect to the derivatives in Equa-
tions (1.1), 1t is convenlent to utilize the maximum principle [1] for formu-
lating the varlational problem. Let us construct the g function for the
problem consldered as

H = = (inx_— mz
%pkmk Px A Wy (DZ) + Py (L’:.ly__*_ £, mz) + pz'c—' (1"2)

and write down the system of equatlions for phase lmpulses as
P = —0H/6mk

Expanded, 1t becomes (1.3)
P + epyae, = 0, Py — &P, = 0, P: — & (pr0, — pyo) =0

Without yet fixing the boundary conditions for the problem, we will con-
struct the necessary integrals of Bquations (1.1) and (1.3) and will investi-
gate the general character of the optimum control regime. Utilizing the
maximum principle, we will establish the optimum law for varlation of the
controls m, . Since the function 7 1is llnearly dependent on the controls,
1t becomes maximum for limiting values of the controls, and if the multiplier
E, for m, 1s positive then the control is at 1ts upper bound, and conversely.
Thus, for p,s=0 the optimum regime for the moment m, variatlon will te of
relay (*) type and is determined by the following relationships:

my (t) = max my for P, () >0,  my(t) = min my for £, (<0 (1.4)

If the varlation reglons of m, are symmetric with respect to zerc, then
my (t) = max |my| sgn py (t) (1.5)

Here maxlm.l 1s the magnitude of the xth control amplitude. In the

following, m, will denote in the present problem the quantlty deflned by the
relation (1.5).

2. Integration of the equations for optimum motion. In order tc cbtain
the solution of the system of equaticns (1.1) and (1.3) in which the ccntrols
are defined in accordance with the conditicns (1.5), we will separate at
first the following subsystem containing the varlables p,, 7, and .,

px + EPy 0, = 0, pu. — epro, =0, o, =m,/C (21)

*) If p, ®= O, then singular regimes occur which may differ from the relay
type. Lee [3] considers these regimes in greater detall.
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In accordance with (1.5), the moment m, 1s constant on each separate seg-

ment of the motion, and consequently, the solution of the last equation on
the segment will be

W, = Wy + Clmyt 2.2)
Thus, the gth component of the body's angular veloclty in the optimum
desplinning regime represents a plece-wise linear function the discontinuity
points of which, according to (1.5), correspond to the roots of the function
Ps -
Let us consider the complex function

P =Pzt ipy 2.3
The first two equations in (2,1} yleld
p — iew, p=0 (2.4)

The solution of this equation is
t
P = P, exp (ie Sm, dt) (2.5)
0
Taking into account Expresaion (2.2), we find

c
e\o, dt = 12+ g0, t = Ao — o2 (*2;m) (2.6)

D e >

Now, in place of {2.5), we get

p exp (— idw,?) = const (2.7)
The expression for the function p may also be given as

p = Pexp li (Ao 4+ o)l (2.8)

where P and o are real constants of integration determined from the
boundary conditions of the problem. Therefore, we have for p, and 2,,
respectively
px = P cos (Aw;® -+ ), Py = Psin Ao + a) 2.9
Multiplying the second equation in {1.1) by ¢ and adding 1t to the
first one, we obtain the equation for the complex transverse angular veloclity
of the body

0 — e0,m = A7im (© = 0, + ioy, m=m +im) (2.10)
The zeneral integral of this equation is according to [2] of the form
t ¢ t
W = [mo -+ -':—:— \ exp (— ie gmzdl) dt] oxXp (ia S mzdt) (2.11)
0 0 ht

Taking into account BExpression {2.6) and changing from the varlable ¢
to w,, we obtain as the result of integration

o = 0, exp [iA (02 — 03] +’"“;H) (ZE:;»}\}% C —Cy—

— isgn A (S — Syl exp (iAw,?) (2.12)

(§=S (0, VIAD So=5(0, VTR
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Here ((w) and S(») are the Fresnel integrals

—_— w
cw=y 2 { cos v2a, S @) =7/ L sin v'a» (2.13)
0 0
The integral (2.12) can alsc be expressed as
o exp (— iho.?) ——m(e’:— ) 2|:;l [C — isgnAS8)] =D = const (2.14)
z

To determine function p,, one need not integrate the corresponding dif-
ferential equation; this function is part of the problem integral g which
may be expressed in the form

m,Cp, — ew, (Px0y — pu(’)x) + A7 (pxmx + pymv) =1 (215)

The right-hand part of this integral only is constant during the entire
process of despinning. This 1s because here the relay controls m, are the
multipliers of the corresponding p, functions, which vanish'at switching
instants.

3. Investigation of the solution. The derived integrals for phase coor-
dinates and impulses contain a sufficient number of constants for the solu-
tion of the considered two-point boundary value problem. The three constants
defining the initial position of the phase point 1n phase space can be chosen
as, for example, the initial values of the velocities w,,, w,5, w;o. Then,
in order to satisfy the boundary conditions of the problem (for example, to
get o, (T) = 0, (I') = 0, (T) = 0 in the caee of a complete stop) there
remain the quantities P, a and T , where T 1is the duration of the
despinning process, and p and o, are integration constants in Equations
(2.9). From the requirement of continuity for p, and p, at the switching
points for the torques m, it follows that thelr amplitude P and phase
{(\w,® + o) also must be continuous. This means in turn that the constant p
retains 1ts value during the entire despinning process, and the constant ¢
changes stepwise by a quantity =x2|\|w,® at the switching points of the
torque m,, remaining unchanged at the switching points for the torques m,
and m, .

Taking into account Expressions (2.9) for p, and p, and also considering
the relations (1.5), we rewrite the integral (2.15) in the form
| pam, |C7Y + PA™ [[my cos (Ao + a)] + | my sin (Mo? + )] —
— ePow, o, cos (A2 + a) — o, sin (M2 + )] =1 3.1)
Hence, it follows that the derived integral determines only the modulus
of the function p, and not its sign. The |p,| can also be expressed as an
explicit function of w,, having eliminated w, and o, by means of the

expression (2.14). However, for computing purposes, it is apparently more
convenient to use Expression (3.1) directly.

The laws for switching the torques m, and m, are given by Expressions



890 B.A, Bwol'nikov

My = | My |max sgn cos (ro, 4 a), my, =\m, ‘max sgn sin (Ao, + a) 3.2)
At the same time, the switching of the torques m, and m, occurs, res-

pectively, at the points defined by Equations

A2 4 a = nn + V7, A2 -+ a == nn (n==0, +1, +2,..) (3.3

Phase trajectories of the system are determined by Equation {2.14), the
right-hand side of which changes stepwise at the switching points of the
torques m,, m,, m,. Let us find the magnitude of this step at the switching
point of m,. On the strength of the continulty of w and w, we obtain

Am,) = D, — D, = 2ia si s 2mEe41)/ w \%
AD (Am,) = D, — D, = 2iw sin ha,? + R <2m) ¢ (3.4)

At the switching point of the torque m we get for aD

AD (Am) = D, — D, = {m—r et 1) (2;; i)"* (C— isgnAS) (3.5

2

Here the subscript 1 denotes a quantity before switching and subseript 2
that after switching, 2 is a constant defined by the integral {2.14)., The
relationships (3.%4) and (3.5) permit joilning of the phase trajectory of the
switching pointe of the controls during numerical evaluation of the despin-
ning process. Equation {2.14%) is equivalent to the two real equations

0y €08 Aw,? 4+ oy sin Aw,? = Re D + %F_} (_2.17;'_;)’/2 (my C -+ my sgniS)
0 + o2 =[DJP + ?.fint_“ (..ﬂ%)’ [C Re (Dm) — sgn A S Im (Dm)] +
2 (g -1 1)2
+ I fe T+ ) (3.6)

This shows that the phase trajectory represents & line of intersection of
a ruled helicoidal surface with a surface of revolution, i.e, a certaln space
spiral-like curve of varying radius and varying pitch which turns itself
about the w,~axis,

For sufficiently large values of @, when A\u?> 1 , the expression for
the angular velocity w as a function of @, can be simplified., Substitu-
ting asymptotic expansions for the Fresnel integrals

— 4 sin|i]e,? SE cos|hlw,?

z = 5 _—"‘7‘*-«-:2“, y Al e e —ee 3.7
C@VIM =g+ 5 S VM =5 -~ 69
into (2.14) and neglecting nonreal constants, we get

(m — 07:(‘5?.“—'27) exp (— iAw,?) = const (3.8)

Multiplying both parts of (3.8) by their conjugate quantitles we find

my, 2 my, 2 3.9
(mx%‘mz(C—«-A)) +(my"“mz(c,”4)) nconSt ( * )

As can be seen from above, for sufficlently large values of w,,the projec~
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tion of the phase trajectory on the surface w,w, will consist in a sequence
of arcs similar to the arcs of circles.

Thus, the construction of the solutlons for the coordinates w, and the
impulses p, permlt in principle the evaluation of a nonsingular optimum
regime for despinning of g symmetric body., However, these integrals contain
two unknown constants P and g determined from the boundary conditions of
the problem. Therefore, for speciflc evaluation of the despinning process,
it is more convenient to consider i1t in the reverse directlion assuming, for
example, that initially w,= w,= w,= O . Then assuming values for P &and
a , it is possible to compute the entire phase trajectory up to a certain
point w,(7), w,(T), 0, (7). Varying then the initial values of p and «
it is posaible to "fall" into a point of phase space separated by an arbi-
trarily small distance from the given point. We will note that the formula
for the initlal value of the modulus p,,

c P .
w,) |on|:m[1—g‘(\mxcosaﬂ"l'lmusmaob]
w(T) z
(3.10)
Yields the condiltion
A :
0<P<|mxcosao|—|-|musinao| (3.11)

Depending on the choice of the sign for the
quantity p,, we get two phase trajectories which
are aymmetric with respect to the surface w,= O.
For definiteness, 1t can be assumed that p,,> O
and, consequently, m,> O and X,> O . The
signs of the control torques m,, anc¢ m,, ,depend-
ing on the magnitude of the angle q,, are deter-
Fig. 1 mined with the aid of Expressions (3.2).

e ————

r

Fig.l shows one of the phase trajectorles for the considered problem which
was constructed by the described method, i.e. for the spinning-up process of
the body from zero initial velocity to 1ts final value. By virtue of the
reverslbllity of the solution for the variational problem, this trajectory
will be o%timum also for the despinning process of the body from the point
v, (T), w,(7), w, (T) in phase space to the point w,= w, = w,= 0 .

k., Despinning with minimal oonsumption of mass. Assuming that the con-
trol torques m, are generated by rockets with constant exhaust velocitiles,
and also that the rockets producing m, and m, torques are identical, we
take the following integral as the functional of the problem:

T

M= (me |+ pimy|+ vim.)) di (4.1)
0
where ¥ 1s the quantity proportional to the consumed mass for despinning
and u and v are positive constants. Thus, in thls problem, the system
of equations of motion (1.1) should be augmented by the additional equation
for the function ¥

M = pime| + pmy|+ vim;| (4.2)



892 B.A. Smol'nikov

and we should seek such a swltching regime for the control torques m, for
which w(7) shall be minimal. However, Equation (4.2) 1is awkward in that it
contains absolute values of sign varying functions. In order to elimlnate
this lnconvenience, we will assume that the quantitles m, can be only posi-
tive or equal to zero

0<m | my [max (4.3)
and their sign in Equations (1.1) will be given by introducing additional
controls u,, the complete set of permissible values of which is bounded only

by two points y,=+1. Then in place of the systems (1.1) and (4.2) we will
have u

. m . m,u
0F + eoyw, = %, @y — g0, = L1
. m u .
0 ==, M =pm,+ pm, + vm, (4.4)

It is easy to see that the differential equations and, consequently, the
integrals for P, and p, will remain as before. The integral which deter-
mines p,, however, will change because the form of the function x will
change with the introduction therein of a new quantity pﬂl, which 18 conju-
gate of the varilable x¥ . It follows from the formulation of the problem
that the quantity pjl will be the only constant equal to unity during the

entire despinning process., Wlth this in mind, the function g can bve
expressed in the form

e (22 ) m (57

pu '
e (2223 ) ean(paay — pyo) (4.5)
From the maximum condition for this function with respect to the controls
m, and u,, 1t follows that
Uy = Sgn py, My = | My |max 5 (Prtéx — L) (4.6)
Here
Ix=[y=|.lA. I,=vC, Sgw=1 trw>0, Sgw =20 for w0

As far as the function p, 1is concerned, it is determined directly from
the integral {4.5), as before, which in view of (%.6) can be expressed as
follows:

| Py | | Pyl | Pl .
mx< ,;C —plt+myl— — W)+ Ml —"V] =0, (4.7)
Since the left-hand part of this equation cannot be negative in the opti-
mum regime, then

sgn p, = Sgn o, (4.8)

It follows from the relation (4.7) that at the end of the despinning pro-
cess when w,= w,= w,= O , the left-hand part of 1t must also be equal to
zero, i.e, conditions

| P (D < 1 (4.9)
must be fulfilled.

In those cases when at some section the condition
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{pe| = I (4.10)

1s fulfilled there can arise singular control regimes when the magnitude of
the control torques may assume other than its boundary values.

Apparently, the singular regime for transverse torques m, and m, can
arise only simultaneously for both of them and only when the longitudinal
velocity w, 18 entirely eliminated, since in the opposite case, according
to (2.4), the functions p, and p, cannot become constant quantities fulfil-
1ing condition (4#.10), The singular regime for the longitudinal torque nm,
is characterized by conditions w,# O and |p,| = v¢ . It follows that
P =0, 1.e. elther w,=w,=0 or p.w,=p,w, .

The first case corresponds to the regime of pure rotation of the body
about the longitudinal axis, and here, naturally, the law for variation of
m, does not affect the general consumptlon of fuel.

As can be easlly shown, the second case can take place only in passive
zones of the transverse torque, i.e. on sectlons where m = O ., Note that
in general the derivative p; becomes constant in passive zones where m =0
(as can be easily shown with the aid of Expresslons (2.5) and (2.11) and,
consequently, the function p, is linear in these intervals of time.

It follows from the form of the integral (4.7) that during the entire
despinning process the function p, varies monotonously, continously increas-
ing or decreasing depending on the sign of the initial velocity W, 1f 1t
is assumed that initially w, > O , then according to (4.8) p,;,>0 and p,
will increase. In this case, 1t is recessary that condition p,, <—uC be
fulfilled, since otherwise the angulqp velocity w will begin to increase
continuously and no despinning will occur in view of Equations (4.4) and
(4.6).

Analogously, if w,,< O , then the initial value of p, must be larger
than V0 . 8ince thls reasoning is valid for any instant of time, it can be
concluded that the sign of the function p, must always be opposite to the
sign of il.e.

& fro 208 u, = — sgn o, (4.11)

Thus, the despinning of the longitudinal angular velocity occurs by turn-
ing on the torque m, in the direction opposite to w, . If the magnitude
of thls torque remains constant at all times, then the duration of the acticn
v 1s defined by Formula lo,lC

(4.12)

__-77527-
whereby
| bz (7)] = ~C (4.13)
The law for variation of w, will then be linear so that, i1f for definite-
ness w,,> O , we get
0, = 09 — MCI (4.14)
In view of this, w, can be utilized instead of ¢ as the independent
varlable, as long a8 ¢ < r , 1.e.before the velocity w, becomes zero, By
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the same token, the integrals (2.?) and (2.1%) remain valid on the sectilon
0 ! <{ 7T which only require the substitution of the controls u, before
the corresponding torques m, . Also, 1t 1s understood, and should be noted
that in contrast to the problem of speed control here the controls n,, my
have passive zones, 1.e. sections where m,= 0 (k = x, y) .

The location of these zones 1s defined by condition

[l << pd, | Pyl < pd (4.15)
From the requirement that these conditions must be fulfilled simultane-
ously in finite time, we obtain the inequality for the amplitude p

pAd <P <pdV2 (4.16)

5. Desp of the transverse velooity. A particular case of the con-
sidered problem is the problem of eliminating the precessional motion of the
rigid body, i.e. the removal of the transverse components of angular velocity
w, and w, of the symmetric body with m, = 0. Under these conditions, the

form of the solution will be different since
+ﬂ@ w, = W, = const and, consequently, instead of

the system (1.1) we shall have a system of

linear equations with constant coefficients,

Denot
¥ P oting 80, = p (51)

-my t@\*m, for the complex angular velocity w and func-
tion p = p, + {p, we will have the integrals

E 2A ( im

@ —~—P~Z) ¢! = const, pei?t = const  (5.2)

It follows from this that the phase trajec~-
tory on the surface w,w, will be a curve com~
posed from circular arcs, In contrast to the

Fig. 2 problem of speed control, here the composition
of these arcs will consist also of the ares
with centers at the origin of the coordinates corresponding to those zones
where m,=m,= 0 .

In order to construct the phase trajectory of the system, we first con-
struct a diagram in the form of a circle of radius p and a square with a
side as 18 shown in Pig, 2. In moving along this circle, the end of the vector

— petPl+a) will then fall into zones corresponding to the various values of
the controls m, and m, and, as can be seen, the shaded segments correspond
to the torques m, and m, acting while the unshaded segments correspond to
passive zones, i.e. when m,=m,= 0 ., It 18 easy to see that the width of
the passive zone vy as weli as the width of any active zone & depends on
the magnitude of the ratio pud/p and are subject to the relationships

¢0s 1/,8 =pd /P, T+ 8 =1,xn (5.3)

With the &id of this diagram, we can construct a family of phase trajec-
tories stemming from the origin of the coordinates. Apparently, the first
part must be active, for example, m,# O and for definiteness, we assume
that cos g,> p4/P, 80 that wu,=1 .

Then, according to (5.2), the equation for the initial part of the phase
curve will be

my

mo A2 2
2 - x = —_— !
s F <“’v - pA) <pA> (5.4)
As soon as the complex vector p 1in Fig.2 reaches $8 , i.e. the complex
vector w — t{m./pd) turns in the phase plane by an angle $8 — o about the

point &, , the torque m, is turned off and then the phase curve becomes an
arc of a circle centered about the origin of the coordinates with the enclosed
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angle y . Then the torque m, is turned on and the phase trajectory moves
along the circle arc with the center at the point a, (0, =0,0, = — mu/pA),
and the length of thHe arc will, apparently, enclose the angle 8 . There-
after, the torque m, 1is turned off and the trajectory becomes the arc of
the sector y referred to the
origin of the coordinates.

Continuing this process, 1t
can be shown that the family of
phase trajectorles with axes uw,,
w, Will be of the form shown in
Fig.3a. As can be seen the en-
tire phase plane 1is divided into
elght sectors by switching lines
composed of circle arcs the length
of each in angular measure 1s
equal to 8 . Four of these sec-
tors correspond to the active
zones of despinning and four
others to the passive zones with

Fig. 3 coasting. Note, that the width

of the passive zone y 1n the

present problem where there 1s no control of the longltudinal velocity, can
be arbitrary in the region O g y € gn . The width of this zone affects only
the duration of the deaspinning process but does not affect the fuel consump-
tion. In the limit when y - O , passive zones disappear and the phase plane
becomes as shown in Fig.3b, It 1s worth noting that here the appearance of
the phage trajectories does not actually differ from the phase trajectories
in the analogous case of speed control with the exception of rotation of the
whole phase plane by the angle 2n .

Thus, comparing the regimes optimum with respect to speed control and fuel
copsumption, .it can be concluded that they differ qualitatively in that the
latter have control torques m, and m, acting not simultaneously by sequen-
tially, and that the longitudinal torque m, 1s not revewsing in the despin-
ning process, its sign is always opposite to the sign of the longitudinal
component of the angular velocity w, .

In conclusion, it should be noted that the practical realization of the
consldered optimum regimes 1s most difficult in view of complex character of
the switching surfaces located in the phase space of the system. However,
the constructed solutlons make 1t possible to find the limiting speed of
control or the economy of control system performance and to evaluate from
this point of view the quality of an arbltrarily selected nonoptimum regime
of control.
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